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A method is presented to analyze real structures, all or part of which convey
¯uid. With well established equations of motion taken as a starting point, the
real and imaginary parts of the natural frequencies are calculated by using ®rst
and second order perturbation theory. It is shown that whilst ®rst order theory
is adequate to predict the imaginary part, a second order calculation is required
to predict the behaviour of the real frequency variation. Comparison is made
with ®nite element formulations for a cantilever system and it is shown that the
method is valid over ranges of practical interest. The method is easily applied
to a general structure as a post processor using calculated modal properties.
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1. INTRODUCTION

The equations governing the vibrational behaviour of pipes conveying ¯uid have
been understood for 40 years. The ¯ow modi®es the behaviour of the pipework
owing to the transport of momentum during the vibration cycle. Whilst the
physical understanding of this situation is straightforward, only simple situations
of beams subject to simple boundary conditions have been analyzed. Even in the
case of a simple straight beam the analysis is somewhat tedious. Whilst there are
many engineering structures in which ¯ow is an important feature the effects of
¯ow on vibrational properties are not included in standard analysis packages.
Indeed to include such features would involve a signi®cant overhead.
In this paper a perturbation technique is proposed to take account of the ¯uid

¯ow effects. As a test of the theory, a comparison is given with the exact results
for a straight pipe and it is shown that the analysis is valid for a range of ¯ow
rates that will cover most areas of interest. Whilst the simple situation is used to
prove the argument, the method can be applied to a structure of arbitrary
complexity, requiring only a prior calculation of the (zero ¯ow) natural
frequencies and mode shapes of the structure concerned.
In section 2, a discussion is given of the equation for a straight pipe, and some

features of the vibrational behaviour. The nature of the general solution for a
cantilever pipe is explained and the dif®culties of the solution are summarized.
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Section 3 introduces a ®nite element formulation for a general structure to derive
the changes on mode shape and natural frequency due to the presence of ¯ow.
Section 4 presents the derivation of the perturbation method and in section 5, a
comparison is made of the perturbation results and the exact results for the case
of a straight pipe. Finally, the treatment of a more general structure including
components conveying ¯uid is described.

2. ANALYSIS FOR A STRAIGHT PIPE

The vibratational behaviour of a pipe containing stationary ¯uid may be
analyzed by using the Euler beam theory upon assuming it has the appropriate
aspect ratio. Allowance for the mass of the ¯uid within the pipe is made simply
by mass loading. When ¯ow is introduced, two extra terms are introduced into
the equations as derived by Gregory and PaõÈ doussis [1] and discussed by
PaõÈ doussis and co-workers [2, 3]. The two terms describe the transport of lateral
momentum and centripetal effects. With the transverse vibration amplitude
denoted by y, the free motion is described by the equation
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where the symbols are de®ned in the Appendix. Note that r is the ¯uid density, v
is the ¯uid velocity and M is the combined mass per unit length of pipe and
¯uid. End conditions are applied to this equation in the usual manner. As
explained by Blevins [4], a solution of equation (1) is sought of the form

y�x, t� � Y�x�eiOt: �2�
This leads to a non-dimensional equation

d4Z

dx4
� V2 d
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in which the following substitutions have been made:

Z � Y=L, x � x=L, b2 � rA=M,

o � OL2�M=EI�1=2, V � vL�rA=EI�1=2, M � rA�m: �4�
Equation (3) for the spatial dependence is considerably complicated by the

presence of the ¯ow terms. A solution is sought of the form Z= Z0esx. Inserting
this trial form gives an equation for s. As shown in reference [1], because the
roots of equation (3) become more complicated due to the ¯ow terms,
imposition of the boundary conditions results in a set of highly non-linear
equations for the parameter s, which leads to the natural frequencies.
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3. A FINITE ELEMENT STUDY

The dynamic equation (1) may be recast in terms of a ®nite element
formulation. Chen and Fan [5] have given a formulation in terms of Timoshenko
beam theory. In this paper the pipe motion is derived by using Euler theory.
This is achieved by considering the virtual work done in increasing the de¯ection
of the pipe by an amount dy, and then integrating to obtain
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Here one observes that, by using standard Euler beam elements, the de¯ection
may be expressed as
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Note that the undetermined parameters an are related to the terminal conditions
of each element via the relationship
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Differentiation of the total energy yields a force equation given by

�K0e�fyg � rAv2�K1e�fyg � 2rAv�K2e� @y
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which may be written in non-dimensional terms as

�k0e�fZg � V2�k1e�fZg � 2b1=2V�k2e� @Z
@t

� �
� �m0e� @

2Z
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In this equation, the terms in curly brackets represent corresponding nodal
quantities, and [k0e], [m0e] are the usual element stiffness and mass matrices,
respectively. Extra terms arise from the ¯ow: in describing the ®rst of these, the
matrix is given by

�k1e� � �Cÿ1�T
�1
0

0
0
2
6x2

8>><>>:
9>>=>>;f1 x x2 x3g dx�Cÿ1�, �9�

whilst the second term is given by
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�k2e� � �Cÿ1�T
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Note that neither of these matrices is necessarily symmetric. This re¯ects the
physics of the ¯uid-conveying pipe, which in general will not be a conservative
system. The completion of the multiplication and integration is straightforward
giving

�k1e� � 1

30l

ÿ36 ÿ33l 36 ÿ3l
03l ÿ4l 2 3l l 2

36 3l ÿ36 33l
ÿ3l l 2 3l ÿ4l 2
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�k2e� �
ÿ1=2 l=10 1=2 ÿl=10
ÿl=10 0 l=10 ÿl 2=60
ÿ1=2 ÿl=10 1=2 l=10
l=10 l 2=60 ÿl=10 0

2664
3775: �11�

The four matrices are now assembled in the usual manner, to form four global
matrices leading to an equation for the motion of the system:

�k0�fZg � V2�k1�fZg � 2Vb1=2�k2�f _Zg � �m0�f�Zg � f0g: �12�
Here the dot superscript denotes a time derivative. It is convenient to re-express
this equation in state space form:
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Now if a vector fzg � Z
_Z

� �
is introduced, then this equation may be rewritten

as

�A�fzg � �B�f _zg � f0g: �14�
Then making the substitution {z}={z0}e

ÿlt yields

��A� ÿ l�B��fz0g � f0g, �15�
which is a standard eigenvalue problem. In this equation

�A� � k0 � V2k1 2Vb1=2k2
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� �
and �B� � 0 m0

k0 0

� �
: �16�

Table 1 shows the calculated ®rst natural frequency for a cantilever beam
modelled with eight Euler beam elements, as the non-dimensional velocity is
increased from zero to seven, using three different values of b, 0�1, 0�2, and 0�5.
For these calculations ®ve elements have been used but as with any ®nite
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element approach, the convergence of results with respect to mesh re®nement
needs some study.

For a relatively high ¯ow velocity, v=5, and b=0�2 the effects of mesh
discretization is illustrated in Table 2. The table shows the real and imaginary
parts of the calculated frequency arising from the ¯ow effects.

4. PERTURBATION ANALYSIS

It has been shown in the previous section how a ®nite element analysis may be
used to analyze a structure containing pipes conveying ¯uid. However, in such a
study there are four system matrices rather than simply stiffness and mass, and
there is the further complication of the need to use a state space formulation in
order to accommodate the convective term. This imposes heavy additional
memory requirements. For a number of applications, such as heat exchangers, it
is desirable to make some assessment of the ¯ow effects without incurring the
penalties of a full calculation as given in the preceding section. Provided that the
¯ow rates are not too great, it is possible to describe the dynamic behaviour of a
pipe in terms of the modal properties of the system with no ¯ow.
To develop this approach, one can return to the case of a cantilever pipe. By

using the FE study of the preceding section, the equation of motion may be
written as

�k0�fZg � V2�k1�fZg � 2ib1=2Vo�k2�fZg ÿ o2�m0�fZg � f0g: �17�
One can now seek to determine the changes in eigenvalues and eigenvectors

which are brought about by the ¯ow of the ¯uid. In principle this could be
achieved by expanding equation (17) in terms of the non-dimensional velocity V

TABLE 1

Effects of ¯ow for ®rst mode; natural frequencies as a function of V, b

V b=0�1 b=0�2 b=0�5
0�1 3�5167+0�0633i 3�5160+0�0895i 3�5142+0�1414i
0�2 3�5185+0�1266i 3�5160+0�1790i 3�5085+0�2829i
0�5 3�5312+0�3174i 3�5156+0�4485i 3�4687+0�7076i
1 3�5786+0�6420i 3�5155+0�9051i 3�3237+1�4180i
2 3�8002+1�3493i 3�5353+1�8820i 2�6912+2�8595i
5 6�3420+7�3869i 4�2752+7�8864i 0+5�3187i
7 0+14�0122i 0+12�5046i ÿ11�077+4�049i

TABLE 2

Model convergence; frequencies of ®rst mode with v=5, b=0�2
Mode 2 elements 4 elements 8 elements 16 elements

1 4�53+7�98i 4�29+7�89i 4�27+7�89i 4�26+7�89i
2 14�67+1�40i 14�54+1�36i 14�48+1�33i 14�48+1�33i
3 68�76+5�43i 52�83+4�44i 52�19+4�30i 52�14+4�29i
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and seeking the solution by matching powers of V. However, because the terms
in equation (17) contain two powers of V this approach is inconvenient, and it is
more appropriate to introduce a parameter l which designates the extent of the
perturbation; thus, in reality, the value l=1 will apply but it is helpful to regard
this as a continuous variable. (A similar approach is used in reference [6].)
It is therefore valid to consider an equation

�k0�fZg � l�V2�k1�fZg � 2ib1=2Vo�k2�fZg� ÿ o2�m0�fZg � f0g, �18�
and to examine the way in which the eigen-solutions depend on the parameter l.
It is reasonable to assume that for a given (modest) value of V, each

eigenvalue and eigenvector can be expressed as a power series of the parameter
l. Thus

fZng � fZ0ng � lfZ1ng � l2fZ2ng � � � � , �19�
where the coef®cients in this equation have yet to be determined. Similarly, the
new eigenvalues are given by

on � o0n � lo1n � l2o2n � � � : �20�
Inserting these expansions into equation (18) leads to

�k0�fZ0n � lZ1n � l2Z2n � � � �g � lV2�k1�fZ0n � lZ1n � l2Z2n � � � �g

� 2ilb1=2V�o0n � lo1n � l2o2n � � � ���k2�fZ0n � lZ1n � l2Z2n � � � �g

ÿ �o0n � lo1n � l2o2n � � � ��2�m0�fZ0n � lZ1n � l2Z2n � � � �g � f0g: �21�
This equation requires that the coef®cient of each power of l is zero and hence
yields a set of equations relating the terms in equations (19) and (20). Note that
the ®rst equation, involving the coef®cients of l0 is simply a restatement of the
original, no-¯ow equation of motion. The ®rst three equations of the series are
used in the current study and these are stated as follows: for l0,

�k0�fZ0ng ÿ o2
0n�m0�fZ0ng � f0g; �22�

for l1,

�k0�fZ1ng � V2�k1�fZ0ng � i2o0nb
1=2V0�k2�fZ0ng

ÿ o2
0n�m0�fZ1ng ÿ 2o0no1n�m0�fZ0ng � f0g; �23�

for l2,

�k0�fZ2ng � V2�k1�fZ1ng � i2o0nb
1=2V�k2�fZ1ng

� i2o1b
1=2V�k2�fZ0ng ÿ o2

0�m0�fZ2ng ÿ o2
1n�m0�fZ0ng

ÿ 2o0no1n�m0�fZ1ng ÿ 2o0no2n�m0�fZ0ng � f0g: �24�
Each equation of this set becomes progressively more complicated. However,
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the technique is widely used in physics [6] and engineering [7]. Equation (22)
is simply a re-statement of the problem with no ¯ow, and this is conveniently
solved by using standard methods; hence, the frequencies o0n and the
corresponding mode shapes {Z0n} are known and furthermore, these mode
shapes form a complete ortho-normal set. The ®rst order changes {Z1n} are
expressed in term of these known modes:

fZ1ng �
X

anmfZ0mg: �25�
Inserting this expression into equation (23) gives

�k0 ÿ o2
0nm0�f

X
anmZ0mg � �k1�fZ0ng � i2b1=2Vo0n�k2�fZ0ng

ÿ 2o0no1n�m�fZ0ng � f0g: �26�
Now, upon taking n=m, the ®rst term on the left side of equation (26) becomes
zero. The equation is now pre-multiplied by {Z0n}T and using the orthogonality
relationships one obtains

V2fZ0ngT�k1�fZ0ng � io0n2b
1=2VfZ0ngT�k2�fZ0ng ÿ 2o0no1n � f0g, �27�

giving the ®rst order frequency changes

o1n � V2fZ0ngT�k1�fZ0ng � io0n2b
1=2VfZ0ngT�k2�fZ0ng

2o0n
: �28�

It is straightforward to insert this expression back into equation (26), assume
n 6�m and deduce an equation for anm giving the changes in mode shape. The
form of this expression is made physically clearer by noting that the changes in
frequency squared may be written as

Do2
n � 2o0no1n � V2fZ0ngT�k1�fZ0ng � io0n2b

1=2VfZ0ngT�k2�fZ0ng, �29�
which becomes simply

Do2
n � 2o0no1n � V2I1n � io0n2b

1=2VI2n: �30�
It is seen from equation (28) that to calculate the ®rst order frequency changes
two quantities need to be calculated for each mode, namely

I1n � fZ0ngT�k1�fZ0ng and I2n � fZ0ngT�k2�fZ0ng: �31�
In order to test this calculation, these integrals were calculated by using ®ve
elements, and the values of these terms for a non-dimensionalized system are
shown for the ®rst three modes in Table 3. Figure 1 shows the changes in the
real and imaginary parts. It is clear that the shapes of the curves have been well
predicted in general terms: the real part shows a quadratic dependence of
frequency change with velocity whilst the imaginary part shows a linear
dependence. Furthermore, the gradient of the imaginary part dependence is
accurately given by the perturbation calculation by using the values in Table 3.
However, the calculation does miss some vital physics in the variation of the real
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part of the frequency: in particular no dependence on the parameter b is
predicted whereas results of the non-linear calculation show a strong
dependence. This illustrates the need to continue the calculation to second order.
It is thought that the physical basis for this requirement is that the introduction
of the convective term brings a qualitative change to the nature of the system
modal behaviour.
Before continuing the calculation, note that a reconsideration of equation (22)

for the case n 6�m leads to

anm � fZ0ng
T�V2k1 � i2o0nb

1=2Vk2�fZ0mg
o2

0n � o2
0m

: �32�

Equation (29) gives the ®rst order perturbation solutions to the problem of a
general pipe. Figure 1 shows the exact solutions for three values of b for the ®rst
mode. It is clear that all three cases show the predicted dependence for relatively
small values of ¯ow and furthermore the linear plots of the imaginary part have
the gradient predicted by the perturbation study.

TABLE 3

Modal products; calculated by using ®ve elements

1 2 3

I1n={y0n}
T[k1]{y0n} 0�8582 ÿ13�2940 ÿ45�9036

I2n={y0n}
T[k2]{y0n} 2�001 2�0039 2�0039
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Figure 1. Real and imaginary partsÐmode 1.
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However, the simple theory presented so far fails to predict the variation of
the real frequency with ¯ow for different ranges of b. Note that correct
predictions are given for the rather arti®cial case of b=0 but the ®rst order
calculation gives no dependence of the real part on b. To overcome this
shortcoming, second order terms must be calculated by considering equation
(24). The complete discussion of this analysis involves some rather tedious
algebra so it is here simpli®ed to retain the main points of interest. By following
a similar treatment as in the ®rst order case,

2o0no2n � fZ0ngV2�k1�fanmZ0mg � io0nfZ0ng2b1=2V�k2�fanmZ0mg

� i2b1=2o1nfZ0ngV�k2�Z0mg ÿ o2
1 ÿ 2o0no1nfZ0ng�m0�fanmZ0mg: �33�

Since anm is small in the present case, the three terms involving this coef®cient
are neglected in order to simplify the solutions. It is easily shown that in the
present case for the lowest mode the neglected terms are a factor of 20 below the
other expressions in the equations. The simpli®ed form of equation (33) becomes

2o0no2n1io1n2b
1=2VfZ0ng�k2�fZ0ng ÿ o2

1n: �34�
Inserting expressions (30) into this equation gives

2o0no2n1i
V2fZ0ngT�k1�fZ0ng � io0n2b

1=2VfZ0ng�k2�fZ0ng
2o0n

 !
2b1=2VfZ0ng�k2�fZ0ng

ÿ V2fZ0ngT�k1�fZ0ng � io0n2b
1=2VfZ0ng�k2�fb0ng

2o0n

 !2

: �35�

Taking the real part of equation (35) and using the relationship of equation (30)
one obtains

2o0no2n � ÿ2bV2I22n ÿRe
V 2I1n � i2o0b

1=2VI2n
2o0

 !2

, �36�

which becomes

2o0no2n � ÿ2bV 2I22n � bV 2I22n ÿ V4I21n=4o
2
0: �37�

The last term on the right side may be neglected for small values of velocity;
more speci®cally the term is unimportant provided that

V52o0n

�������������������������
1ÿ bI22n=I1n

q
: �38�

The total change in natural frequency may be written as

Do � o1 � o2: �39�
Taking now just the real part one has
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Do2
n � 2o0no1n � V2I1n�1ÿ bI22n=I1n�: �40�

Hence, expressions have been established for the perturbation solutions for both
natural frequency and mode shapes.

5. COMPARISON WITH ``EXACT'' RESULTS

The second order results for the real frequency change show very good
agreement with the values from the ``exact'' calculations. For mode 1, shown in
Figure 2, the frequency changes agree well up to ¯uid velocities of order two.
Furthermore, in this case the ¯ow effects increase the natural frequencies. At
higher values of b the frequencies are reduced and, as shown in Figure 4, for
b=0�3, the perturbation solution is accurate over a wider range of ¯ow. From
equation (40) it can be seen that the ``critical'' value of b is given by

bcrit � I1n=I
2
2n, �41�

and using the ®gures from Table 2 yields the value bcrit1 0�215. In view of this
result it is not surprising that the quadratic perturbation result becomes
erroneous for u> 2 with b=0�2, as shown in Figure 2. In that case the quartic
term of equation (37) becomes important. As a check on the validity of this
analysis apply equation (38) to this case. The valid range for the quadratic
solution is given (using values from Table 3) by V< 7*

������������������������������
1ÿ 0�2�4=0�85p

11�7,
which agrees well with the curve shown in Figure 2. In the higher modes the
dependence with b is much less, with no change of sign in the frequency shift.
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Figure 2. Comparison of ``exact'' and perturbation solutionsÐmode 1.
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It can be concluded that the simple perturbation solutions presented give an
accurate view of the dynamics of the system provided that the ¯ow velocities are
modest. The frequency changes, however, may be signi®cant in these cases.

1 2 3 4 5

F
re

q
u

en
cy

 c
h

a
n

g
e

0

–5

–10
0

=0.3

Non-dimensional flow velocity

1 2 3 4 5

0

–5

–10
0

=0.1

1

1 2 3 4 5

0

–5

–10
0

=0.2

Figure 3. Comparison of ``exact'' and perturbation solutionsÐmode 2.

1 2 3 4 5

F
re

q
u

en
cy

 c
h

a
n

g
e

0

–5

–10
0

=0.3

Non-dimensional flow velocity

1 2 3 4 5

0

–5

–10
0

=0.1

1 2 3 4 5

0

–5

–10
0

=0.2

Figure 4. Comparison of ``exact'' and perturbation solutionsÐmode 3.



632 A. W. LEES

6. DISCUSSION

The dynamics of pipes conveying ¯uids have been studied extensively in the
literature, but most of the study has been focused on the problems of stability.
At ¯ow velocities below the instability values, forces arise which modify the
dynamic properties of the system. The methods presented in section 4 have been
shown to give a good description of the in¯uence of ¯ow at modest velocities
and it should be noted that the calculations were carried out by using only the
normalized mode shapes of the structure under study. This implies that a simple
post processing routine may be applied to calculate the change to the dynamic
properties of an arbitrarily complex structure such as a heat exchanger. Note
also that for steel components, the range of non-dimensionalized ¯ow
corresponds to very fast ¯ows. For example, in a typical pipe span of length
5 m/s having a diameter of 0�2 m and wall thickness 0�01 m, a non-dimensional
velocity of 1 corresponds to an actual velocity of 46 m/s.
The analysis of this paper has been presented in terms of non-dimensional

parameters, but clearly the results may be transformed into dimensioned terms
and this may be more appropriate for a general case. Note that in applying the
¯ow corrections to a general structure, the additional matrices may be assembled
by using the element forms given in section 3. However, only those parts of the
structure which convey ¯uid will have non-zero terms. Thus, the approach is
particularly convenient to apply.

7. CONCLUSIONS

By using a ®nite element formulation of Euler beam theory for comparison, it
has been shown that a second order perturbation solution gives an accurate
assessment of the in¯uence of ¯ow. This solution technique helps to clarify a
number of trends in the dynamics of a pipe conveying ¯uid. The method is easily
applied as a post processor using computed (zero ¯ow) natural frequencies and
mode shapes. This provides a useful approach to a number of practical
calculations.
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APPENDIX: NOTATION

anm modal mixing coef®cientsÐ®rst order
bnm modal mixing coef®cientsÐsecond order
A cross-sectional area of ¯ow
C element transformation matrix
E Young's modulus for pipe
ET pseudo energy of system
i

�������ÿ1p
I second moment of area of the pipe
Inm cross integral of mode shapes and km stiffness terms
K0 stiffness matrix for system
K1 matrix expressing centripital term
K2 convective matrix
M0 mass matrix
k0 stiffness matrix for system (non-dimensional)
k1 matrix expressing centripital term (non-dimensional)
k2 convective matrix (non-dimensional)
l element length
L total pipe length
m0 mass matrix (non-dimensional)
M ¯uid mass per unit length
s spatial exponent
t time
v ¯uid velocity
V non-dimensional ¯uid velocity
x distance along pipe
ymn mth correction to nth mode shape

Greek symbols
b mass ratio of ¯uid to pipe and ¯uid
omn mth correction to nth natural frequency
l perturbation order parameter
Z analytic non-dimensional mode shape
x normalized position along pipe
t normalized time
O natural frequency
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Subscript
e element
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